Particle Size Distribution Measurement of Lithium-Ion Battery Materials
Test et inspection des batteries et des piles à combustible
Test, analyse et inspection des batteries et des piles à combustible

Les progrès réalisés dans le domaine des piles à combustible et des batteries permettent de créer de nombreux véhicules électriques. Shimadzu fabrique une gamme complète d'instruments permettant de caractériser la composition et le comportement thermique/mécanique des membranes, des électrolytes et des électrodes des cellules de batterie.
Les scanners Shimadzu SMX-225CT permettent une imagerie non destructive précise des composants internes de la batterie.
Kratos Analytical , filiale de Shimadzu, propose des instruments de spectroscopie photoélectronique à rayons X pour des études de surface et électrochimiques avancées.
Guide des solutions de batteries lithium-ion
Solutions pour les tests de matériaux, l'analyse thermique, l'analyse des composants organiques/inorganiques, l'évaluation de la structure interne, la microanalyse et la caractérisation des particules des batteries lithium-ion.
Évaluation multilatérale des électrodes positives et négatives dans les batteries lithium-ion
La demande de batteries lithium-ion devrait encore augmenter à l'avenir, stimulée par la demande de véhicules électriques, qui est soutenue par les politiques de divers pays du monde, et par la demande d'ordinateurs, de smartphones et de tablettes, qui est stimulée par la transformation numérique (DX). En outre, des entreprises et des instituts de recherche du monde entier sont activement engagés dans la recherche et le développement pour commercialiser toutes les batteries à semi-conducteurs en tant que batteries de nouvelle génération. Shimadzu fournit des solutions complètes à divers problèmes du marché en utilisant des équipements d'évaluation et une technologie cultivée au cours d'une longue histoire.
Matrice d'instruments de test de batteries rechargeables au lithium-ion
Part | Material | Commonly Used Components | Test Items (Instrument) |
---|---|---|---|
Positive Electrode | Active Material | LiCoO2 (lithium cobalt oxide) Mn or Ni may be used instead of Co. |
Composition (ICPES,ICPMS,XRF) Crystallinity (XRD) Particle Size (Particle Size Analysis) Electron State (XPS) |
Binder | Vinylidene fluoride (polyvinilidene fluoride (PVDF)) | Molecular weight distribution (GPC), Composition (FTIR) | |
Conduction enhancer | Carbon (carbon black, acetylene black, graphite, etc) | Crystallinity (XRD) | |
Negative Electrode | Active Material | Carbon, graphite | Crystallinity (XRD), Particle Size (particle size analysis) |
Trace Additive | Li, P, Cu, Na, Co, Ca, K, etc | Composition (ICP) | |
Binder | SBR CMC(carboxymethylcellulose), PVDF also used previously |
Structure (FTIR) | |
Separator | Polyolefins (high-density polyethylene) | Structure (FTIR) Thermal characteristics (TGA) |
|
Electrolyte Solution | Solvent | Carbonate ester, carboxylate ester, ether | Composition (GCMS,GC) |
Electrolyte | LiPF6, LiBF4 | Composition (ICP) | |
Additive | Vinylene Carbonate | Composition (GCMS) | |
Cells Single-cell, module |
Compression strength(Universal testing machine) |
Applications

Positive Electrode
The positive electrode is an important component that influences the performance of lithium-ion battery. Material development is underway to improve the high energy density and durability against charge/discharge cycles. In order to reduce the cost of battery and ensure a stable supply, the flow of cobalt-free positive electrode active materials is advancing.
-
Particle Properties (SALD)
-
Elemental Mapping (EPMA)
-
State Analysis (EPMA)
-
Element and Current Mapping Analysis (EPMA, SPM)
-
Anode and Cathode Air Exposure (SPM or AFM)

Negative Electrode
As the market for lithium-ion battery for automotive use expands, the challenge is to further improve energy density while reducing costs. As a component, the negative electrode plays an important role together with the positive electrode.
-
Compression Test for Anode Material (MCT)
-
Visualization of the Additive Layer (SPM)
-
Particle Properties (SALD)
-
Testing, Analysis and Inspection of Batteries and Fuel Cells
-
Anode and Cathode Air Exposure (SPM or AFM)

Separator
Separator is an important component that prevents short circuits between positive and negative electrodes, and at the same time facilitates the smooth passage of lithium ions. In addition to high safety, high energy density, high input/output, and low cost are required, and performance evaluation from various viewpoints is important.
-
Multifaceted Evaluation (X-Ray, CT, SPM, AG)
-
Piercing Test (AG)
-
Evaluation of Temperature-Dependent Strength Properties of Lithium-Ion Battery Separator by Piercing and Tensile Testing
Multi-Faceted Approach for Evaluating Lithium-Ion Battery Separators
-
Evaluation of Temperature-Dependent Strength Properties of Lithium-Ion Battery Separator by Piercing and Tensile Testing
-
Compression Test of Lithium Ion Battery Materials (MCT)

Electrolyte Solution
The electrolytes and solvents that make up the electrolyte solution must-have characteristics such as oxidation and reduction resistance during charge and discharge, thermal and chemical stability, and ionic conductivity, and must be capable of producing high-quality SEI coatings. It is also important to analyze electrolyte solution components in order to evaluate battery performance because the composition is modified by battery reaction.
-
Glove Box System (FTIR)
-
Deterioration Evaluation (IC)
-
Deterioration Evaluation (GCMS)

Battery Cell
Lithium-ion battery are used in a variety of fields and applications, and it is important to analyze defective products, compare good products and defective products, compare before and after charging and discharging, observe structural changes inside cells in cycle tests, and evaluate gas components.
-
Internal Gas Analysis (GCMS)
-
Analysis System for Internal Gas (GC)
Journals & Papers
Experimental study on the formability of aluminum pouch for lithium polymer battery by manufacturing processes
Yu, M., Song, M., Kim, M. et al. J Mech Sci Technol (2019) 33: 4353. https://doi.org/10.1007/s12206-019-0831-y